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Abstract. We have studied the polaron effect on the binding energy of shallow hydrogenic
impurities in a cylindrical quantum dot using a variational approach for the finite confinement
potential. The interactions of charge carriers (electron and ion) with both the confined LO phonon
and surface phonons (SSO and TSO) are taken into account. The effect of these three phonon modes
on the binding energy of a shallow donor is examined. The emphasis is placed on the dependence
of the polaronic corrections on the quantum dot size. It is found that the correction due to the LO
phonons is more important than that due to the surface optical phonon modes.

1. Introduction

In the last decade, quantum dot structures have received much attention because of their physical
interest and possible advantages in optoelectronic device applications [1]. The electron–
phonon interaction in such systems has been studied extensively [2–11], because the polaronic
effects can strongly influence the optical and transport properties of the quantum dots. Several
authors have proved the importance of the phonon modes in small semiconductor quantum
dots [3, 4, 12].

Few works have dealt with the longitudinal optical phonons and the surface optical phonons
in a cylindrical quantum dot. Recently, Kanyinda-Malu and de la Cruz [13] calculated the
surface-mode frequencies in cylindrical dots for both cases: free-standing in vacuum and
heterostructure configuration. They found that the symmetric and antisymmetric modes diverge
for large values of the cylinder radius and the surface-side optical modes are radius independent
in the heterostructure while they present a slight dependence on the cylinder size in the free-
standing case forR < 2 nm. In the previous theoretical investigations of the polaronic effects in
low dimensional systems, only the electron–phonon interaction was considered, not including
the ion–phonon coupling. Recently, Fliyou et al [14] have considered this interaction for the
bound polaron in spherical GaAs quantum dots; in that work the ion–phonon interaction is
very weak (αGaAs = 0.068) and the ion–electron interaction via phonon exchange is ignored.

As pointed out by Marini et al [15] for a donor-like exciton in spherical quantum dots, this
interaction affects the polaronic contribution to the binding energies where LO phonons are
considered and also for the effect of an SO phonon on the binding energy of exciton in quantum
well wires [16]. Here, we consider an intermediary coupling (αCdT e = 0.315). We expect that
the ion–electron exchange via phonons is important and consequently the binding energy of
shallow donor impurities must be modified. Following the same treatment as [17], we derive a
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confined LO phonon and two types of SO phonon mode with their eigenfrequencies in order to
establish the electron (ion)–phonon interaction Hamiltonian in the framework of the dielectric
continuum approximation.

The reason for the choice of the cylindrical quantum dot geometry lies in the fact that
the structures of this type are relatively more convenient for fabricating devices than the
others which particularly have spherical geometry. One of the major concerns in the quantum
dot is the impurity state. Xia [18] has studied the donor and acceptor impurity problem in
a spherical quantum dot. Vivas-Moreno and Porras-Montenegro et al [19] have calculated
the binding energy of a shallow hydrogenic impurity located on-centre in cylindrical shape
GaAs–(Ga,Al)As low-dimensional systems subjected to an axial magnetic field. In these
works, the effect of the carrier–charge phonon coupling is ignored.

In this work, we report a variational calculation in the effective-mass approximation of the
binding energies of shallow donor impurities in the cylindrical CdTe quantum dot embedded
in a dielectric matrix. We have included the coupling effect of different phonon modes:
confined LO, top mode (TSO) and side mode (SSO) with the charge carrier (electron and ion).
Calculations are performed for the impurities located at the centre of the structure with a finite
well depth as a function of the dot size. In section 2, we describe the theoretical model. Results
and discussion are presented in section 3.

2. Calculation method

2.1. Hamiltonian

The Hamiltonian of a shallow on-centre hydrogenic impurity in a cylindrical QD, with radius
R and height H = 2d , of CdTe embedded in dielectric matrix can be written in the effective
mass approximation as follows:

H = He +Hph +He−ph +Hion−ph. (1)

The electronic Hamiltonian operator He can be expressed as

He = − h̄2

2m∗

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
+
∂2

∂z2

]
− e2

εr
+ Vc(r) (2)

wherem∗ is the electronic effective mass, Vc(r) is the confining potential and r = (ρ2 + z2)1/2

is the electron position. The dielectric constant ε is taken as the static constant ε0 in the absence
of a phonon and the optical constant ε∞ in the presence of the phonon modes.

As the impurity is fixed at the centre of the QD, the effect of the static surface polarization
energy arising from the difference in the dielectric constant between the semiconductor QD
and the surrounding medium is supposed to be negligible. Our supposition is valid in the
region (H > a∗ and R > a∗) where the effective mass approximation works. In the case of
dot size less than a∗ (strong confinement region), the dielectric mismatch will be important
and must be taken into account [20].

The second term is the total Hamiltonian of the free phonon field in a cylindrical QD,

Hph = HLO +HTSO +HSSO (3)

where

HLO =
∑
l,n1

h̄ωLOa
+
ln1
aln1 (4)

is the Hamiltonian operator for the confined LO phonon, a+
ln1
(aln1) is the creation (annihilation)

operator for the LO phonon of the (l, n1)th mode with frequency ωLO (they satisfy the
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commutative rules for bosons) and wave vector (k// = χn1/R, kz = lπ/2d) where χn1 is
the n1th root of the Bessel function of the zeroth order.

The Hamiltonian operators for TSO and SSO phonons are respectively:

HTSO =
∑
n2,m,p

h̄ωpb
+
n2,m,p

bn2,m,p (5)

and

HSSO =
∑
n3,m,p

h̄ωssB
+
n3,m,p

Bn3,m,p (6)

where b+
±,n2,m

, b±,n2,m and B+
±,n3,m

, B±,n3,m are respectively, the creation and annihilation
operators of TSO and SSO phonons with frequency ω± and ωss of the (n2,m)th and (n3,m)th
modes. p = +,− for the symmetric and anti-symmetric mode respectively.

For surface phonons the inter-subband transition can be neglected [21–23] and the electrons
are assumed to occupy only the ground subband (n = 1, m = 0). We only need to consider
the lowest surface phonon modes (m = 0) [24].

The frequencies of the different phonon modes are:

ω2
LO = ε0

ε∞
ω2
TO (7)

ω2
T SO± = (ε0 + εd)∓ (ε0 − εd) exp(−2q±d)

(ε∞ + εd)∓ (ε∞ − εd) exp(−2q±d)
ω2
TO (8)

ω2
SSO =

(
1 − ε0 + ε∞

ε∞ − ε

)
ω2
TO (9)

where

ε = −εd I0(kn3R)K1(kn3R)

I1(kn3R)K0(kn3R)
. (10)

I0, K0, I1, K1 are the modified Bessel functions of zeroth and first order, kn3 = n3π/2d is the
wave vector of the SSO phonon mode, ωTO is the transverse optical-phonon frequency and εd
is the dielectric constant of the matrix.

The corresponding TSO wave vectors (q±,n2 ) are the n2th roots of the equations:

πq+,n2RJ1(q+,n2R)J0(q+,n2R) + exp(−2q+,n2d)− 1 = 0 (11)

πq−,n2RJ1(q−,n2R)J0(q−,n2R)− exp(−2q−,n2d)− 1 = 0. (12)

The number of wave vectors (q±,n2 ) is limited by the Brillouin zone condition, i.e.
q±,n2 � π/2a, where a is the lattice constant of the crystal.

The third term in equation (1) describes the Hamiltonian interaction of an electron with
the different phonon modes:

He−ph = He−LO +He−T SO +He−SSO. (13)

The first term is the electron–LO-phonon interaction:

He−LO = −
∑
n1

J0

(
χn1

ρ

R

)[ ∑
l=1,3..

Vln1 cos

(
lπz

2d

)
(aln1 + a+

ln1
)

+
∑
l=2,4..

Vln1 sin

(
lπz

2d

)
(aln1 + a+

ln1
)

]
(14)

with

V 2
ln1

= 1

/

4πe2h̄ωLO

[χn1/R]2J 2
1 (χn1)[1 + [lπR/2dχn1 ]2]

(
1

ε∞
− 1

ε0

)
(15)
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where / = 2πR2d is the crystal volume.
The second term in equation (13) is the electron–TSO-phonon interaction, which is given

by:

He−T SO = −
∑
n2,+

Vn2+J0(qn2+ρ) cosh(qn2+z)(bn2,+ + b+
n2,+
)

−
∑
n2,−

Vn2−J0(qn2 − ρ) sinh(qn2−z)(bn2,− + b+
n2,−) (16)

with

V 2
n2,+

= 1

S
[4πe2h̄ω+[1/[ε(ω+)− ε0] − 1/[ε(ω+)− ε∞]]]

/[qn2+ [(sinh(2qn2+d) + 2qn2+d)(J
2
1 (qn2+R)− J0(qn2+R)J2(qn2+R))

+(sinh(2qn2+d)− 2qn2+d)(J
2
0 (qn2+R) + J 2

1 (qn2+R))]] (16a)

and

V 2
n2,− = 1

S
[4πe2h̄ω−[1/[ε(ω−)− ε0] − 1/[ε(ω−)− ε∞]]]

/[qn2− [(sinh(2qn2−d)− 2qn2−d)(J
2
1 (qn2−R)− J0(qn2−R)J2(qn2−R))

+(sinh(2qn2−d) + 2qn2−d)(J
2
0 (qn2−R) + J 2

1 (qn2−R))]] (16b)

where

ε(ω+) = −εd coth(q+,n2d) (16c)

and

ε(ω−) = −εd tanh(q−,n2d). (16d)

The last term in equation (13) is the electron–SSO-phonon interaction

He−SSO = −
∑

n3=2,4..

0n3+I0

(
n3π

2d
ρ

)
cos

(
n3π

2d
z

)
(Bn3,+ + B+

n3,+
)

−
∑

n3=1,3..

0n3−I0

(
n3π

2d
ρ

)
sin

(
n3π

2d
z

)
(Bn3,− + B+

n3,−) (17)

with

02
n3± = 1

S

2πe2h̄ωss

dk2
n3

[I 2
0 (kn3R)− I0(kn3R)I2(kn3R)]

(
1

ε(ωss)− ε0
− 1

ε(ωss)− ε∞

)
(18)

where S = πR2 is the cross-sectional (perpendicular to z) area of the cylindrical dot.
The last term in equation (1) is the Hamiltonian interaction of an ion with different phonon

modes:

Hion−ph = Hion−LO +Hion−T SO +Hion−SSO. (19)

For an ion located at the centre of a cylindrical QD, the Hamiltonian operators describing the
ion–LO-phonon coupling (Hion−LO), ion–TSO-phonon coupling (Hion−T SO) and ion–SSO-
phonon coupling (Hion−SSO) can be expressed respectively as:

Hion−LO =
∑
n1

∑
l=1,3..

Vln1(aln1 + a+
ln1
) (20)

Hion−T SO =
∑
n2,+

Vn2+(bn2,+ + b+
n2,+
) (21)

Hion−SSO =
∑

n3=2,4..

0n3+(Bn3,+ + B+
n3,+
). (22)
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To treat the complicated Hamiltonian (1), we adopted the variational method developed by
Lee et al [25]. The trial wave function is assumed to take the following form

|ψ(ρ, z)〉 = U |0〉|ψe(ρ, z)〉 (23)

where |0〉, |ψe〉 and U are, respectively, the zero-phonon state, the electronic part and the
unitary transformation operator defined as

U = exp

[ ∑
l,n1

[fl,n1a
+
l,n1

− CC] +
∑
n2,p

[gn2,pb
+
n2,p

− CC] +
∑
n3,p

[hn3,pB
+
n3,p

− CC]

]
. (24)

fl,n1 , gn2,p and hn3,p are the functions, which are determined by the variational means.
∂

∂fl,n1

〈0|U−1HU |0〉 = ∂

∂gn2,±
〈0|U−1HU |0〉 = ∂

∂hn3,±
〈0|U−1HU |0〉 = 0 (25)

which yield the following expressions:

fln1 =




Vln1

h̄ωLO

(
J0

(
χn1

ρ

R

)
cos

(
lπ

2d
z

)
− 1

)
for odd l

Vln1

h̄ωLO
J0

(
χn1

ρ

R

)
sin

(
lπ

2d
z

)
for even l

(26)

gn2,+ = Vn2,+

h̄ω+
(J0(qn2,+ρ) cosh(qn2,+z)− 1) (27)

gn2,− = Vn2,−
h̄ω−

J0(qn2,−ρ) sinh(qn2,−z) (28)

hn3± =




0n3,+

h̄ωss

(
I0

(
n3
π

2d
ρ

)
cos

(
n3
π

2d
z

)
− 1

)
for even n3

0n3,−
h̄ωss

I0

(
n3
π

2d

)
sin

(
n3
π

2d
z

)
for odd n3.

(29)

After minimizing 〈0|U−1HU |0〉 with respect to fl,n1 , gn2,± and hn3,±, we obtained the effective
Hamiltonian in the atomic unit system (a∗ = h̄2ε0/m

∗e2; R∗ = m∗e4/2ε2
0h̄

2)

Heff = −
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
+
∂2

∂z2

]
− 2√

ρ2 + z2

ε0

ε∞
+ Vc(r) + Ve−LO(ρ, z)

+Vion−LO + V ex
e−LO−ion(ρ, z) + Ve−T SO(ρ, z) + Vion−T SO

+V ex
e−T SO−ion(ρ, z) + Ve−SSO(ρ, z) + Vion−SSO + V ex

e−SSO−ion(ρ, z). (30)

Ve−LO(ρ, z), Ve−T SO(ρ, z) and Ve−SSO(ρ, z) are the effective potentials induced by the
interaction between the electron with the confined LO phonon, the top-SO phonon and the
side-SO phonon, respectively:

Ve−LO(ρ, z) = −
∑
n1

J 2
0 ((χn1/R)ρ)

h̄ωLO

[ ∑
l=1,3

V 2
ln1

cos2

(
lπ

2d
z

)
+

∑
l=2,4

V 2
ln1

sin2

(
lπ

2d
z

)]
(31)

Ve−T SO(ρ, z) = −
∑
n2,+

V 2
n2,+

h̄ω+
J 2

0 (qn2,+ρ) cosh2(qn2,+z)

−
∑
n2,−

V 2
n2,−
h̄ω−

J 2
0 (qn2,−ρ) sinh2(qn2,−z) (32)

Ve−SSO(ρ, z) = −
∑
n3=2,4

02
n3,+

h̄ωss
I 2

0

(
n3
πρ

2d

)
cos2

(
n3
πz

2d

)

−
∑
n3=1,3

02
n3,−
h̄ωss

I 2
0

(
n3
πρ

2d

)
sin2

(
n3
πz

2d

)
. (33)
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The effective potentials induced by the ion–phonon (LO, TSO and SSO) coupling are expressed
as:

Vion−LO = −
∑
n1

∑
l=1,3

V 2
ln1

h̄ωLO
(34)

Vion−T SO = −
∑
n2,+

V 2
n2,+

h̄ω+
(35)

Vion−SSO = −
∑
n3=2,4

02
n3,+

h̄ωss
. (36)

We define V ex
e−LO−ion(ρ, z), V

ex
e−T SO−ion(ρ, z) and V ex

e−SSO−ion(ρ, z) as the electron–ion
exchange potentials via an LO, TSO and SSO phonon, respectively:

V ex
e−LO−ion(ρ, z) =

∑
n1

∑
l=1,3

2V 2
ln1

h̄ωLO
J0

(
χn1

ρ

R

)
cos

(
lπ

2d
z

)
(37)

V ex
e−T SO−ion(ρ, z) =

∑
n2,+

2V 2
n2,+

h̄ω+
J0(qn2,+ρ) cosh(qn2,+z) (38)

V ex
e−SSO−ion(ρ, z) =

∑
n3=2,4

202
n3,+

h̄ωss
I0

(
n3
πρ

2d

)
cos

(
n3
πz

2d

)
. (39)

2.2. Ground state wave function

In the finite barrier model approximation, the potential Vc(r) in the Hamiltonian (equation (2))
will be taken as zero inside the cylindrical dot (ρ < R and |z| < d) and V0 outside it. The
corresponding ground state wave function is written as:

ψe(ρ, z) = Af (ρ)g(z) exp(−αρ) (40)

where A is the normalization constant. f (ρ) and g(z) are, respectively, the ground state
solution of the Schrödinger equation in the (x–y)-plane and z-axis [26].

f (ρ) =



J0

(
θe
ρ

R

)
if ρ < R

J0(θe)

K0(βR)
K0(βρ) if ρ > R

(40a)

with β = [V0 − (θe/R)
2]1/2 and θe is a constant determined by the boundary condition at

ρ = R

θe
J1(θe)

J0(θe)
= βR

K1(βR)

K0(βR)
(40b)

and

g(z) =




cos
(
πe

z

2d

)
if |z| < d

cos(πe/2)

exp(−kd) exp(−k|z|) if |z| > d
(40c)

with k = [V0 − (πe/2d)2]1/2 and πe is a constant determined by the boundary condition at
z = ±d

tan
(πe

2

)
= k

2d

πe
. (40d)



Hydrogenic impurity binding energy in quantum dot 4823

2.3. Binding energy expression

In the presence of different phonon modes, the ground state energy (GSE) is obtained as:

Ephg (α) = 〈ψe(ρ, z)|Heff |ψe(ρ, z)〉 = E0(α) + Ee−LO(α) + Eion−LO + Eexe−LO−ion(α)
+Ee−T SO(α) + Eion−T SO + Eexe−T SO−ion(α) + Ee−SSO(α) + Eion−SSO(α)
+Eexe−SSO−ion(α) (41)

where

E0(α) =
〈
ψe(ρ, z)

∣∣∣∣ − ∇2
r − ε0

ε∞

2√
ρ2 + z2

+ Vc(r)

∣∣∣∣ψe(ρ, z)
〉

(41a)

Ee−LO (T SO, SSO)(α) = 〈ψe(ρ, z)|Ve−LO (T SO, SSO)(ρ, z)|ψe(ρ, z)〉 (41b)

Ee−LO (T SO, SSO)−ion(α) = 〈ψe(ρ, z)|V ex
e−LO (T SO, SSO)−ion(ρ, z)|ψe(ρ, z)〉. (41c)

Ee−LO (T SO, SSO)(α), Eion–LO (T SO, SSO) and Eexe−LO (T SO, SSO)−ion(α) are the contribution of
different phonon modes to the GSE of the bound polaron in the cylindrical quantum dot. Their
expressions are so long that we cannot write them here.

We can note that the Eion−LO (T SO, SSO) terms are independent of the electronic state;
consequently they did not contribute to the binding energy.

On the other hand, the GSE of the system without the Coulomb interaction Ephsub is:

E
ph

sub = E0
sub + Ee−LO(α = 0) + Eion−LO + Eexe−LO−ion(α = 0) + Ee−T SO(α = 0)

+Eion−T SO + Eexe−T SO−ion(α = 0) + Ee−SSO(α = 0) + Eion−SSO
+Eexe−SSO−ion(α = 0) (42)

where

E0
sub = 〈ψe(ρ, z, α = 0)| − ∇2

r + Vc(r)|ψe(ρ, z, α = 0)〉. (42a)

In the absence of the phonon modes, the GSE of the impurity donor is

E0
g(α) =

〈
ψe(ρ, z)

∣∣∣∣ − ∇2
r − 2√

ρ2 + z2
+ Vc(r)

∣∣∣∣ψe(ρ, z)
〉
. (43)

The impurity binding energy EphB (E
0
B) is defined as the difference of energy between the

bottom of the electronic conduction band without the Coulomb interaction Ephsub(E
0
sub) and the

ground state energy of the impurity Ephg (E0
g) in the quantum dot:

without a phonon:

E0
B = E0

sub − min
α

�E0
g(α)� (44)

and with a phonon:

E
ph

B = E
ph

sub − min
α

�Ephg (α)� = E0
sub − E0(αmin) +;ELO(αmin) +;ETSO(αmin)

+;ESSO(αmin). (45)

;ELO(αmin), ;ETSO(αmin) and ;ESSO(αmin) are the polaronic corrections to the binding
energy of an electron bound to an impurity in a cylindrical quantum dot.
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3. Results and discussion

The present section is devoted to a discussion of numerical results obtained in the case of
a CdTe microcylinder embedded in a dielectric matrix of constant εd = 2.5. The effective
units of length a∗ and energy R∗ are: a∗ = h̄2ε0/m

∗e2; R∗ = m∗e4/2ε2
0h̄

2. The physical
parameters corresponding to the polar crystal CdTe used for the numerical computation
are: m∗ = 0.091m0, ε0 = 9.6, ε∞ = 7.13, a∗ ∼= 55, 91 Å, R∗ ∼= 13.34 meV and
h̄ωLO = 20.84 meV. The height of the potential barrier is taken as V0 = 5 R∗.

In figure 1, the binding energies are plotted versus the cylinder radius R for different
values of cylinder height (H = 2d). We can see that the binding energy increases as the radius
decreases and reaches a maximum before the threshold Rc (Rc = 0.26 a∗). At small values
of R < Rc discrete levels are absent in the well. The electron wave function is distributed
mainly outside the cylinder. With increasing the radius of the cylinderR, the energy levels fall
from the continuum spectrum into the well. On the other hand, the binding energies decline
with increasing dot height H . We can conclude, as for other low dimensional structures, that
the geometric confinement raises the binding energy [27]. The shape of the curves obtained
in the presence of the phonon modes EphB (dotted curves) is similar to ones obtained without
phonon modes E0

B (solid curves). The importance of the correction due to the phonon modes
is more pronounced as the hydrogenic impurity binding energy becomes larger. Indeed, for
fixed H , the relative shift of this energy ;EB = E

ph

B − E0
B reaches a maximum for the same

radius as the binding energy and diminishes as well as R increases. On the other hand, this
energy variation declines when the dot becomes higher along the z-direction for a given value
of R. The ;EB behaviour leads us to conclude that the polaronic contribution is larger for
dots of small dimensions. The inclusion of the ion–phonon coupling imposes an exchange

Figure 1. The variation of impurity binding energy as a function of the cylinder radius R for three
values of the cylinder height (H = 2d). The solid and dotted curves represent the binding energies
without (E0

B ) and with (EphB ) the phonon corrections, respectively.
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Figure 2. Polaronic correction;ESSO to the impurity binding energy as a function of the cylindrical
radius R for three values of the QD height.

term (ion–electron interaction via phonon) whose effect is substantial [15]. The contribution
of each phonon modes to the binding energy has two components: one is attractive due to
electron–phonon interaction and one is repulsive due to the ion–electron interaction via a
phonon (exchange term). This result is in agreement with that obtained in the case of an
exciton for LO and SO phonons in [15] and [16] respectively. These contributions depend on
the electronic state. For the LO phonon modes, both interactions have the same behaviour as
that found for the binding energy as a function of cylindrical radius for different dot heights.
In addition, they are very weak near the threshold radiusRc. This is due to the small number of
LO phonon modes for such a dot size. This number increases as the cylinder height augments.
For a fixed value of H , the attractive interaction is higher than the exchange term in the first
subband state for all cylindrical radius. However, for the impurity ground state the exchange
term becomes comparable to the attractive interaction for a greater value of R. With our
numerical calculation, we have remarked that this behaviour depends on the heights of the dot
and the potential barrier.

Figure 2 illustrates the variation of the side surface optical phonon mode correction;ESSO
versus the cylinder radius for the same values of H as previously. We may note that this
correction shows a maximum for small dot radius and vanishes rapidly asR augments. Indeed,
the bound electron to the impurity feels better the effect of SSO phonon modes when it is close
to the lateral surface (small width R). Furthermore, the ;ESSO rises with increasing cylinder
height. The SSO phonon number grows in proportion with the increase of the dot height.
Consequently, their effect on the binding energy will be important. One expects that the
impact of these last modes enhances as the impurity is displaced from the centre to the lateral
surface and increases when the cylinder height becomes greater by tending to the quantum
well wire limit.

In figure 3, we have reported the variation of the correction introduced by the top surface
optical phonon modes to the binding energy as a function of the cylinder height for different
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Figure 3. Polaronic correction ;ETSO to the impurity binding energy as a function of the QD
height (H = 2d) for three values of the cylindrical radius R.

values of the QD radius R. It can be seen that the TSO modes have a prominent effect
in the weak height H region. Their effect declines rapidly with the augmentation of the
H dimension. In the limit of infinite dot height (quantum well wire limit) this correction
vanishes.

By comparing these three corrections, we remark that the confined LO phonon mode effect
is more important than the optical surface phonon ones (SSO and TSO). Consequently, the
major part of the ;EB variation energy is due to the LO phonons.

Finally, we have to note, from our numerical calculation, that the energy exchange
introduced by the ion–phonon coupling represents 33% of the polaronic correction ;EB .

In conclusion, we have studied the influence of the coupling between the electron and ion
with both the confined phonon and the surface phonons on the binding energy of an on-centre
donor impurity in a cylindrical QD embedded in a dielectric matrix. The calculations were
performed within the effective-mass approximation and using a variational method. A finite
deep potential describes the effect of a quantum confinement well. The result shows that the
correction due to the LO phonons is more important than that of SO phonons. The side and top
surface optical phonon corrections decrease rapidly as the dot size augments. Furthermore,
the energy exchange between an ion and electron via phonons affects sensibly the binding
energy especially for the more polar crystal. Since the charge carrier–phonon interactions
are essential to understand the experimental observation of the optical absorption spectra in a
semiconductor [28], we expect that the results of this work will be useful in future experiments
in low-dimensional systems.
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[15] Marini J C, Stébé B and Kartheuser E 1994 Phys. Rev. B 50 14 302
[16] Sheng W D and Gu S W 1993 Solid State Commun. 88 111
[17] Li W S and Chen C Y 1997 Physica B 229 375
[18] Xia J B 1989 Phys. Rev. B 40 8500
[19] Vivas-Moreno J J and Porras-Montenegro N 1998 Phys. Status Solidi b 210 723
[20] Takagahara T 1993 Phys. Rev. B 47 4569
[21] Constantinou N C and Ridley B K 1990 Phys. Rev. B 41 10 622
[22] Wang X F and Lei X L 1994 Phys. Rev. B 49 4780
[23] Constantinou N C and Ridley B K 1989 J. Phys.: Condens. Matter 1 2283
[24] Sheng W D, Xiao Y Q and Gu S W 1993 J. Phys.: Condens. Matter 5 L129
[25] Lee T D, Low F E and Pines D 1953 Phys. Rev. 90 297
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